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Abstract 
Comparing measured chip formation characteristics to those predicted by machining 
models is an important technique for testing the validity of those models. These 
characteristics include whether a chip is continuous or segmented, as well as the 
frequency at which segments form. In this paper, various techniques for measuring 
segmentation data are reviewed. A sample data set is then used to compare techniques 
for analyzing segment formation. These techniques show that there is interesting, 
nonrandom behavior in the sequence of segment formation times. A pattern matching 
technique is proposed which shows potential to provide valuable additional insight. 

 
1 INTRODUCTION 
 
Studying how metal deforms and flows 
during the creation of machining chips 
yields important insights into the metal 
cutting process. Measurement of the 
process may be used to improve and verify 
the accuracy of finite element modeling 
(FEM) simulations. These simulations are 
an important tool for process optimization, 
allowing industry to make parts faster, 
better, and at less cost. 
 
An important measurement is segmentation 
formation time (SFT) the amount of time 
required for chip segments to form. A 
segmented chip has alternating zones of 
low and high shear strain. Figure 1 shows a 
segmented chip. 
 

 
Figure 1:  Unetched American Iron and 
Steel Institute (AISI) 1045 steel machining 
chip. Width and shape of segments may 
vary widely. Segments are approximately 
0.6 mm high. 
 
This paper investigates methods to 
measure and analyze SFT data. First, three 

techniques for measuring SFT are 
reviewed. Next, a data set of 2 495 segment 
timings is obtained using one of these 
methods and analyzed using a variety of 
techniques. Some of these analyses 
indicate interesting dynamic phenomena 
regarding segmentation.  Finally, a pattern 
matching technique is proposed which 
shows potential to provide valuable insight 
into the segment formation process. 
However, this paper focuses on 
measurement and analysis techniques. A 
full discussion of all the physical processes 
which may be involved, such as workpiece 
damping of tool vibration, is beyond the 
scope of this paper. 
 
2 MEASUREMENT OF SFT 
 
There are several techniques for measuring 
SFT. The following sub-sections briefly 
review and compare three common 
methods. The first two are well established 
while the third is relatively new, made 
practical due to recent improvements in 
digital high-speed imaging cameras. 
 
2.1 Post-Machining Examination 
 
In post-machining examination, collected 
chips are mounted, polished, etched, and 

Commercial equipment and materials are identified to adequately specify certain procedures. In 
no case does such identification imply recommendation or endorsement by the National Institute 
of Standards and Technology, nor does it imply that the equipment or materials are necessarily 
the best available for the purpose. This paper is an official contribution of the National Institute 
of Standards and Technology and is not subject to copyright in the United States. 
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examined under a microscope to determine 
the sizes of the segments. Assumptions are 
made regarding the chip velocity during 
machining to convert the measured 
segment sizes to SFT. 
 
An advantage of this technique is that 
examination of the chips may yield other 
important information such as which 
metallographic phases are present. 
However, the process is both time and labor 
intensive. Thus, the sample size (number of 
segments characterized) is generally small. 
Since a given population of segments 
sometimes has a wide range of sizes, a 
small sample size may result in poor 
characterization of the average SFT. Also, 
time-dependency (dynamics) of SFT is 
difficult to obtain. Finally, individual 
segments are not always easy to visibly 
distinguish from each other, even when 
polished and etched. 
 
2.2 Single Sensor 
 
A second technique used to measure SFT 
involves recording data from a single sensor 
during machining, such as acoustic 
emission or force as a function of time. 
When a peak detection algorithm is applied 
to the data, one may determine SFT. 
 
While this technique is relatively easy to 
implement and yields large data sets, there 
is some uncertainty as to whether the peaks 
in the sensor data accurately correlate to 
segment formation. If other phenomena 
produce large peaks, or the peak detection 
algorithm is not set to a correct threshold, 
results may have large errors with no 
mechanism for validity checking. 
 
2.3 Image (Array Of Sensors) 
 
A third technique for measuring SFT uses 
an array of sensors to form a movie (a 
sequence of individual images). Typically, 
these sensors record visible light, but there 
is no reason why other characteristics such 
as emitted thermal radiation could not be 

used. Image analysis of the movies yield 
automated SFT determinations [1]. 
 
Among the advantages of this technique are 
that movies may yield additional information 
such as strain fields, which may be directly 
compared to FEM simulations. Also, manual 
viewing of the movies may allow verification 
of the accuracy of the SFT determination if 
desired. 
 
Disadvantages include the fact that image 
processing of such large data sets is 
computationally intensive. Also, many 
image analysis algorithms have parameters 
which must be determined before accurate 
information is produced. Also, it is often a 
challenge to acquire clean images without 
error sources, such as flying chips 
obscuring the field of view or the images 
going out of focus due to changes in the 
chip width. 
 
3 THE DATA SET ANALYZED 
 
Once SFT data has been measured, there 
are many techniques available to analyze it. 
Each yields different types of information 
describing the SFT and how it varies with 
time. Section 4 compares several of these 
analysis techniques. A data set, acquired 
using the acquisition technique outlined in 
Section 2.3, is analyzed as an illustration. 
Other publications [1, 2] fully document this 
data set. For convenience, it is briefly 
described next. 
 
An orthogonal cut was made on the edge of 
an American Iron and Steel Institute (AISI) 
1045 steel disk. The surface speed was 250 
m/min and the feed rate was 0.30 mm per 
revolution. During machining, a high-speed 
visible light camera acquired a 128 pixel by 
128 pixel movie of the side of the chip at 
60 000 frames per second. The resulting 
21 890 frame movie was then image-
processed to determine a set of 
displacement vectors describing how 
different portions of the images moved from 
one frame to the next. The vectors near the 
cutting zone were then analyzed, and peaks 
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in their mean orientation were detected to 
determine when individual segments 
formed. It was assumed that the side of the 
chip was a reasonable representation of the 
entire chip width. Finally, several sections of 
the movie were manually examined to verify 
correctness of the SFT data. 
 
Figure 2 shows measured cutting forces as 
the tool plunges into, cuts, and finally 
retracts from the workpiece. SFT data 
includes neither the very beginning nor the 
very end of the cut because the chips were 
too small to image with adequate resolution 
during these times. 2 495 segments were 
detected and analyzed. The first 
(approximately) 20 % of the data occurred 
as the tool plunged into the workpiece, the 
middle 60 % at nominal steady state cutting, 
and the final 20 % as the tool was 
retracting. 
 

0.0

1.0

2.0

-0.1 0 0.1 0.2 0.3 0.4 0.5
Time (s)

Fo
rc

e 
(k

N
)

Tangential Force
Thrust Force
Beginning & Ending of SFT Data
At Full Depth of Cut

 
Figure 2:  Cutting forces (in kilonewtons) 
during the test. Time t = 0 is set to the 
beginning of the SFT data. 
 
4 ANALYSIS 
 
When analyzing the SFT data, there are two 
issues to explore. First, what is the local 
average of the SFT values? Second, what 
are the dynamics of the SFT values? The 
local average used was the running average 
of N adjacent SFT values, where N was 
generally 50. We refer to the local average 
of the SFT as Characteristic 1. In signal 
processing terms, Characteristic 1 
represents the constant and low frequency 

components of the SFT data. It reflects both 
steady state and relatively slowly varying 
effects such as the tool heating up or the 
depth of cut slowly changing. 
 
Figure 3 shows both raw SFT data and 
Characteristic 1 (the gray line) as a function 
of time. Individual formation times have 
discrete values because they are computed 
from the number of movie frames it took for 
the segment to form. Characteristic 1 
changes from about 80 µs at the start and 
end of the data set to about 165 µs for most 
of the full depth of cut. Figure 3 also 
illustrates how individual SFT values 
fluctuate around Characteristic 1 by as 
much as 300 %.  This fluctuation can be 
problematic for a researcher using FEM 
simulations to predict Characteristic 1. Due 
to long computation times, FEM simulations 
often encompass only about 10 segments. 
Even if the FEM model is perfect, 10 
segments may not be enough to accurately 
characterize Characteristic 1 due to the 
large scatter in the SFT data. 
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Figure 3:  Raw SFT data (black dots) and 
Characteristic 1 (gray line), the local 
averages of the formation times, where 
N=50. 
 
The second characteristic of interest is how 
individual segment formation times deviate 
from the local average. Referred to as 
Characteristic 2, this characteristic 
measures both intrinsic noise and higher 
order dynamics. It is assumed that, with 
analysis, higher order dynamics information 
may be separated from noise. In signal 
processing terms, Characteristic 2 is the 
high frequency component of the SFT data. 
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An example of a dynamic effect of interest is 
if the amount of time it takes a given 
segment to form directly affects the amount 
of time it takes the next segment to form. 
There are several possible physical reasons 
this might occur. One theoretical scenario 
might be that a slowly forming segment may 
tend to leave more of a built-up edge on the 
tool, or perhaps leave the tool slightly hotter. 
This might tend to cause the next segment 
to form slightly faster, which might leave 
less of a built-up edge or perhaps leave the 
tool slightly cooler. If this is occurring, a 
careful analysis of the data should be able 
to detect the pattern of a slowly forming 
segment, followed by a rapidly forming 
segment, followed by a slowly forming 
segment, and so on. Other physical 
dynamic mechanisms might produce other 
patterns. Detection and characterization of 
these patterns promise to contribute to our 
ability to understand the machining process. 
 
There are two ways to represent 
Characteristic 2 data. One is as a set of 
deviations, shown in Figure 4. If a segment 
formed in 180 µs and the local average is 
150 µs, the deviation is +30 µs, or 20 %. 
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Figure 4:  The entire Characteristic 2 data 
set represented as a set of deviations from 
the local averages. The gray lines are 
described in Section 4.1. 
 
Another representation is as a set of S’s 
and L’s, a portion of which is shown in 
Figure 5. Segments taking a shorter amount 
of time to form than the local average are 
labeled ‘S’ (represented mathematically as 
a 0). Those that take longer to form are 
labeled ‘L’ (represented as a 1). Some data 
analysis techniques lend themselves to 

processing the set of deviations per se while 
others lend themselves to processing the 
set of S’s and L’s. 
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Figure 5:  A portion of the Characteristic 2 
data represented as a set of S’s and L’s. 
 
As seen in Figure 6, categorizing whether a 
segment is an S or an L is not performed 
solely for convenience of the analysis 
techniques. Manual examination of the 
images from which the SFT data was 
derived has established that when several 
S’s occur in a row, the space between them 
consistently appears different than when 
several L’s appear in a row. A more careful 
analysis would be required to establish if 
there is a consistent pattern concerning the 
gap between an S and an L. 
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Figure 6:  Images from high-speed 
microvideography of machining chips. 
 
The remainder of this paper is dedicated to 
analyzing Characteristic 2 data and 
assessing if different analysis methods yield 
consistent characterizations of segment 
formation dynamics. 
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4.1 Variation Analysis 
 
Levene testing [3] breaks a data set into 
blocks and determines if the standard 
deviation of any of the blocks differs from 
the rest by a statistically significant value. A 
block is a sub-set of the data. The set of 
deviations was broken into 50 blocks of 
(approximately) 50 data points. The Levene 
test showed a statistically significant change 
in standard deviation with time. 
 
Figure 7 shows how the standard deviation 
decreases with time. The range of the data 
(the difference between the maximum and 
minimum values) also decreases with time, 
as shown by the two gray lines in Figure 4. 
The top line was determined by performing 
a least-squares fit of the maximum value in 
each of the 50 blocks to a line. The bottom 
line was determined by fitting the 
minimums. Note how they come closer 
together as time passes. 
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Figure 7:  Standard deviation as a function 
of time for the set of deviations. 
 
Measurements indicate that temperature of 
both the tool and the workpiece are 
increasing during this same time. This 
indicates that temperature may possibly 
affect variability of the SFT. 
 
4.2 Autocorrelation Testing 
 
Autocorrelation [3] measures the likelihood 
a change in value at some time will 
correlate to a change in value at a later 
time. Autocorrelation has values between -1 
and +1. If the autocorrelation is -1, a high 
value will likely be followed by a low value 
and a low value will likely be followed by a 

high value. If the autocorrelation is +1, a 
high value will likely be followed by another 
high and a low value will likely be followed 
by another low. An autocorrelation of 0 
indicates that the second value is equally 
likely to be either higher or lower than the 
first (no correlation). Units of time are 
expressed as lag. One data point later in 
time is a lag of 1. For our data, a lag of 1 
corresponds to one segment later. 
 
The entire set of deviations, as well as 5 
subsets, was analyzed. In all cases, there 
was a statistically significant positive 
autocorrelation at lag 1 but none for longer 
lags. 
 

Portion of Data Autocorrelation 
at lag=1 

All data points +0.24 ± 0.04 
1st 20 % (plunging) +0.19 ± 0.09 
2nd 20 % (full depth) +0.28 ± 0.09 
3rd 20 % (full depth) +0.24 ± 0.09 
4th 20 % (full depth) +0.31 ± 0.09 
5th 20 % (retraction) +0.17 ± 0.09 

Table 1:  Autocorrelation coefficients at 
lag=1 for subsets of the set of deviations. 
 
Recall from Figure 3 that Characteristic 1 is 
different while plunging and retracting than it 
is at full depth. This indicates that a fixed 
frequency effect, such as a resonance in the 
structure of the machine tool, is unlikely to 
be the cause of this autocorrelation. 
 
4.3 Chaotic Dynamics 
 
Previous researchers [4, 5] have explored 
the use of chaotic dynamics to describe 
machining data. When chaotic dynamics 
accurately describes a physical system, it is 
a powerful tool for understanding a process. 
However, this technique tends to require 
very large data sets. Also, issues such as 
false neighborhoods [4] can be difficult to 
detect and can adversely impact the results. 
It is a matter of debate whether our data set 
is large enough for analysis. Due to these 
difficulties, we did not pursue this technique. 
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4.4 Randomness Testing 
 
Randomness testing seeks to determine if a 
data set is truly random. This is 
accomplished by applying a battery of tests, 
each looking for a specific type of 
nonrandomness. Some tests require a large 
data set while others do not. If any test 
indicates nonrandomness, the data is 
considered nonrandom. 
 
STS [6] is a general-purpose binary 
randomness testing software package. It 
was used to perform tests on the set of S’s 
and L’s. The data set is nonrandom if any of 
the following tests indicate nonrandomness 
by yielding a P value less than 1 % [6]: 
 
1. Proportion of S’s and L’s for the entire 

sequence. 
2. Proportion of S’s and L’s for 

nonoverlapping blocks in the sequence. 
3. Maximal excursion from zero of the 

random walk defined by the cumulative 
sum of adjusted (-1, +1) digits in the 
sequence. 

4. Is the number of runs of S’s and L’s of 
various lengths as expected for a random 
sequence? A run is the number of 
consecutive occurrences of the same 
value. 

5. Is the number of occurrences of 
predefined patterns as expected for a 
random sequence? 

 
These tests were run multiple times with 
different sequence and block sizes. Test 1 
and test 3 consistently passed (did not 
indicate nonrandomness). Test 2 and test 4 
consistently failed (indicating 
nonrandomness). Test 5 failed for most 
block sizes. These results show that the 
SFT data is nonrandom. 
 
4.5 Traditional and Inclusive Runs 

Analysis 
 
The traditional runs analysis performed by 
test 4 in Section 4.4 showed that our data is 
nonrandom. Figure 8 and Figure 9 show 
results of a traditional runs analysis on the 

set of deviations performed independently 
of the analysis in Section 4.4. Run length is 
the number of consecutive decreases or 
increases in the data values. The Y-axis is 
the difference between the number of runs 
found in the data and the number of runs 
predicted for a random sequence by Monte 
Carlo simulation. The error bars indicate 
±2σ of the random sequence Monte Carlo 
results. Any value sufficiently far from zero 
to fall outside of these bars is considered 
statistically significant. Figure 8 addresses 
how the number of runs of exactly length i 
compare to what is expected for a random 
sequence. By contrast, Figure 9 examines 
how the number of runs of at least length i 
compare to what is expected. 
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Figure 8:  Traditional runs analysis plot for 
the set of deviations. Run length = i. 
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Figure 9:  Traditional runs analysis plot for 
the set of deviations. Run length ≥ i. 
 
Figure 10 is similar to Figure 8 except that it 
is performed on the set of S’s and L’s. Run 
length is the number of consecutive S’s or 
L’s in a row. Figure 8, Figure 9 and Figure 
10 all indicate that, when compared to a 
random sequence, there are too few short 
runs (with values below the error bars) and 
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too many long runs (with values at or above 
the error bars). 
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Figure 10:  Traditional runs analysis plot for 
the set of S’s and L’s. Run length = i. 
 
Figure 8 and Figure 10 may be thought of 
as histograms. Whenever an event is 
detected, say a run of length 6, the 
associated bin (bin 6) is incremented by 
one. However, we argue that a run of length 
6 could actually be 2 consecutive runs of 
length 3. The run of length 6 may have 
“stolen” counts from bin 3 and put them in 
bin 6 instead. It is not immediately obvious 
which interpretation has the best correlation 
to physical processes involved in 
machining. Figure 9 addresses this to some 
extent. A run of length 6 increments bins 1 
through 6, each by 1. However, if a run of 
length 6 is actually 2 runs of length 3, 
perhaps it should have incremented bin 3 by 
2 (instead of 1). 
 
The inclusive runs analysis shown in 
Figure 11 attempts to address this issue. A 
run of length i includes the possibility that it 
may actually be made up of shorter runs 
and increments their bins by the appropriate 
amounts. In Figure 10, bins are incremented 
only if a run of length i is proven to exist. In 
Figure 11, bins are incremented every time 
evidence is found that there may be a run of 
length i hidden in the data. We argue that 
Figure 10 (where the minimum amount 
possible was added to the bins) and Figure 
11 (where the maximum amount possible 
was added) effectively determine lower and 
upper bounds. We propose that the curve 
best describing machining dynamics lies 
somewhere between. 
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Figure 11:  Inclusive runs analysis plot for 
the set of S’s and L’s. Run length = i. 
 
4.6 Joint Time-Frequency Analysis 
 
Joint Time-Frequency Analysis [7] breaks a 
data set into blocks and determines which 
sinusoidal frequencies are present in each 
block. The output is a surface contour plot 
where the X co-ordinate is time, the Y 
co-ordinate is frequency, and the height of 
the surface is the amplitude of the sinusoid 
at that frequency at that moment in time. 
 
One advantage of this methodology is that 
presenting the data as a surface allows 
quick visual inspection of how the 
amplitudes change with time. However, 
multiple processing settings were tried but 
little insight was gained. Perhaps modeling 
the data as a set of sinusoids is not the 
most useful approach. 
 
4.7 Pattern Analysis 
 
If one views L, LL, … LLLLLLLLLLL, S, SS, 
… and SSSSSSSSSSS as patterns, the 
runs analysis shown in Figure 10 and Figure 
11 simply characterize differences between 
the number of occurrences of those patterns 
found in the data and the number of 
occurrences predicted by a random 
sequence. However, there is no reason to 
limit the patterns searched for to these. 
There is also no reason to limit the 
prediction model to a random sequence. 
Any pattern and any model of interest may 
be used. There are multiple ways to 
implement this analysis. Results for one 
implementation will be discussed next. 
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The set of S’s and L’s was analyzed. The 
patterns searched for were all possible 1 bit 
(S and L), 2 bit (SS, SL, LS, LL), 3 bit (SSS, 
SSL, ... LLL), and 4 bit (SSSS, SSSL, ... 
LLLL) long patterns. Counting occurrences 
of patterns was performed in a manner 
similar to Figure 11. That is, if an SSLL is 
found, it does not preclude the possibility 
that the SSLL may also be thought of as an 
SS followed by an LL. To assess how well 
various models fit the data, the data was 
divided into 50 blocks of (approximately) 50 
segments. The number of occurrences in 
each block was then compared to what the 
model predicted for that block. The average 
and standard deviation of the results for the 
50 blocks was then computed. 
 
Summarized in Table 2, four models were 
tried and will be described in the text. All 
four are probabilistic in nature and combine 
the number of occurrences of shorter bit 
length patterns to predict the number of 
occurrences of longer bit length patterns. 
Due to the way occurrences are counted, 
there is some inherent covariance between 
the counts for different patterns. Thus, the 
probabilistic models are not mathematically 
rigorous. Nonetheless, it was felt that results 
from such an analysis would be illuminative. 
The number of S’s is rarely exactly equal to 
the number of L’s for any given block. For 
example, a typical block might have 47 % of 
one and 53 % of the other. For our block 
size, this level of variability is expected. 
When predicting how many 2 bit long 
patterns should occur, one might choose to 

predict 25 % of each. This is what one 
expects for a random sequence. However, if 
a particular block has 47 % S’s and 53 % 
L’s, predictions of 2 bit long pattern 
occurrences for that block should take this 
into account. One expects slightly fewer 
SS’s than LL’s in this case. All four models 
use occurrences of 1 bit long patterns (S 
and L) to predict those for 2 bit long 
patterns. Hence, the row labeled ‘Predicted 
2 bit long patterns are based on’ in Table 2 
has ‘1 bit long patterns’ in each column. In 
all four models, the predicted occurrences 
of the 2 bit long patterns are based on what 
a random sequence should produce, with a 
correction for any slight ‘imbalance’ 
between the number of S’s and L’s within 
the particular block being analyzed. 
 
Average and standard deviation of the 
errors (across the 50 blocks) for 1 bit long 
patterns (S and L) are shown in Table 3. 
       

Pattern Ave. Error Ave. σ 
S -2 % 2 % 
L +2 % 2 % 

SS, LL +16 % 2 % 
SL, LS -16 % 2 % 

Table 3:  Average errors and average 
standard deviations for 1 and 2 bit patterns. 
 
This is well within what one expects for a 
random sequence. The average and 
standard deviation of the errors for the 2 bit 
long patterns are also shown in Table 3. 

 
Prediction Models: 

 1 Bit Previous 
& 1 Bit 

Previous 
Only 2 Bit 

Predicted 2 bit long 
patterns are based on 

1 bit long 
patterns 1 bit long patterns 1 bit long 

patterns 
1 bit long 
patterns 

Predicted 3 bit long 
patterns are based on 

1 bit long 
patterns 

2 bit long patterns 
and 1 bit long patterns

2 bit long 
patterns 

2 bit long 
patterns 

Predicted 4 bit long 
patterns are based on 

1 bit long 
patterns 

3 bit long patterns 
and 1 bit long patterns

3 bit long 
patterns 

2 bit long 
patterns 

Table 2:  Models for predicting number of occurrences of longer bit length patterns from those of 
shorter length patterns. Each column describes a model. Each row describes which short bit 
length pattern occurrences are used to predict longer bit length pattern occurrences.
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When rounded to the nearest whole 
percent, the average and standard deviation 
for SS and LL were identical, so they are 
shown together. The same was true for SL 
and LS. There are consistently more SS’s 
and LL’s than expected for a random 
sequence. 
 
As previously discussed, all four models 
combine the number of occurrences of 
shorter bit length patterns to predict the 
number of occurrences of longer bit length 
patterns. All four models use 1 bit long 
pattern occurrences to predict those for 2 bit 
long patterns. The difference between the 
models involves how 3 bit and 4 bit long 
pattern occurrences are predicted. 
 
Model 1 Bit uses occurrences of 1 bit long 
patterns to predict occurrences of 3 and 4 
bit long patterns. This has the effect of 
predicting what a random sequence should 
produce, with a correction for any slight 
“imbalance” between the number of S’s and 
L’s within a given block. Model 
Previous & 1 Bit combines occurrences for 
M-1 bit long patterns (where M is either 3 or 
4) with occurrences of 1 bit long patterns to 
predict occurrences of M bit long patterns. 
Model Previous Only uses occurrences of 
M-1 bit long patterns to predict occurrences 
of M bit long patterns. Model 2 Bit uses only 
occurrences of 2 bit long patterns to predict 
occurrences of M bit long patterns. 
 
Looking at errors for the 3 bit and 4 bit long 
patterns, those which form runs (LLL, SSS, 
LLLL, and SSSS) generally had the largest 
errors. There were generally more 
occurrences than expected. Thus, the 
results were divided into two groups, one for 
these patterns (LLL, SSS, LLLL, and SSSS) 
and one for the other patterns. Shown in 
Tables 4 and 5, the averages of both the 
absolute values of the errors and of the 
standard deviations for each of these two 
groups were computed as follows: First, the 
values for the 3 bit long patterns were 
averaged. Next, the values for the 4 bit long 
patterns were averaged. Finally, the two 
averages were averaged. 

Model Ave. |Error| Ave. σ 
1 Bit 48 % 9 % 

Previous & 1 Bit 27 % 7 % 
Previous Only 19 % 7 % 

2 Bit 13 % 6 % 
Table 4:  Average absolute values of errors 
and average standard deviations for 
patterns LLL, SSS, LLLL, and SSSS. 
 

Model Ave. |Error| Ave. σ 
1 Bit 14 % 5 % 

Previous & 1 Bit 10 % 4 % 
Previous Only 9 % 4 % 

2 Bit 9 % 4 % 
Table 5:  Average absolute values of errors 
and average standard deviations for 
patterns other than LLL, SSS, LLLL, and 
SSSS. 
 
The model with the lowest average error, 
combined with a low standard deviation 
around that error, is considered the best 
model. Looking at Table 4, model 2 Bit 
does the best job of predicting occurrences 
for patterns LLL, SSS, LLLL, and SSSS. 
Table 5 indicates that both models 
Previous Only and 2 Bit are best for the 
other 3 bit and 4 bit long patterns. 
Considering Table 4 and Table 5 together, 
model 2 Bit is the best model. If one 
considers average errors of about 13 % 
acceptable, behavior of 3 bit and 4 bit long 
patterns may be described (or at least 
approximated) by looking at them as just 2 
bit long patterns chained together. 
 
We intend to repeat this analysis for 
patterns longer than 4 bits in length. It would 
be significant if model 2 Bit adequately 
predicts these patterns as well. It would 
indicate that if you characterize occurrences 
of 2 bit long patterns, you have 
characterized occurrences of all patterns. 
 
5 CONCLUSIONS 
 
Various analysis techniques have revealed 
interesting, nonrandom behavior in our 
machining chip segment formation time data 
set. Randomness testing showed that the 
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data is not random. Runs analysis showed a 
tendency for there to be not enough short 
runs and too many long runs when 
compared to a random sequence. 
Autocorrelation showed a tendency for how 
long it takes one segment to form to be 
positively correlated to how long it takes the 
next to form. In addition, we are developing 
a pattern analysis technique which shows 
promise. Preliminary results indicate that 
the data set might be adequately described 
as chains of patterns, each pattern being 2 
segments long. 
 
Taken together, all these analysis 
techniques paint a consistent picture; how 
long it takes for one segment to form is 
predictive of how long the next will take. It is 
an open question as to whether this is due 
to one segment directly affecting the 
formation of the next, or whether it is due to 
both segments responding to some external 
force. However, since the average segment 
formation time was different while plunging 
and retracting than it is at the full depth of 
cut, a fixed frequency effect such as a fixed 
resonant frequency in the structure of the 
machine tool is unlikely to be the cause of 
these results. If a resonance is the cause, 
the resonant frequency must be changing 
with the depth of cut. 
 
Finally, variation analysis showed that a 
drop in variation of the segment formation 
time data coincided with increasing tool and 
workpiece temperature. This raises the 
possibility that these temperatures may 
affect segment formation time. 
 
This paper focuses on measurement and 
analysis techniques. A full analysis of 
physical processes which may be involved 
is beyond the scope of this paper and left as 
future work. 
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